Multiatlas segmentation of thoracic and abdominal anatomy with level set‐based local search
نویسندگان
چکیده
Segmentation of organs at risk (OARs) remains one of the most time-consuming tasks in radiotherapy treatment planning. Atlas-based segmentation methods using single templates have emerged as a practical approach to automate the process for brain or head and neck anatomy, but pose significant challenges in regions where large interpatient variations are present. We show that significant changes are needed to autosegment thoracic and abdominal datasets by combining multi-atlas deformable registration with a level set-based local search. Segmentation is hierarchical, with a first stage detecting bulk organ location, and a second step adapting the segmentation to fine details present in the patient scan. The first stage is based on warping multiple presegmented templates to the new patient anatomy using a multimodality deformable registration algorithm able to cope with changes in scanning conditions and artifacts. These segmentations are compacted in a probabilistic map of organ shape using the STAPLE algorithm. Final segmentation is obtained by adjusting the probability map for each organ type, using customized combinations of delineation filters exploiting prior knowledge of organ characteristics. Validation is performed by comparing automated and manual segmentation using the Dice coefficient, measured at an average of 0.971 for the aorta, 0.869 for the trachea, 0.958 for the lungs, 0.788 for the heart, 0.912 for the liver, 0.884 for the kidneys, 0.888 for the vertebrae, 0.863 for the spleen, and 0.740 for the spinal cord. Accurate atlas segmentation for abdominal and thoracic regions can be achieved with the usage of a multi-atlas and perstructure refinement strategy. To improve clinical workflow and efficiency, the algorithm was embedded in a software service, applying the algorithm automatically on acquired scans without any user interaction.
منابع مشابه
Partial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملA Multiatlas Segmentation Using Graph Cuts with Applications to Liver Segmentation in CT Scans
An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilis...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملGrading evaluation study of atlas based auto-segmentation of organs at risk in thorax
Background: The grading evaluation of atlas based auto-segmentation (ABAS) of organs at risk (OARs) in thorax was studied. Materials and Methods: Forty patients with thoracic cancer were included in this study, and for each thirteen thoracic OARs were delineated by an experienced radiation oncologist. The patients were randomly grouped into the training and the test dataset (20 each). The inves...
متن کاملEvaluation of multiatlas label fusion for in vivo magnetic resonance imaging orbital segmentation
Multiatlas methods have been successful for brain segmentation, but their application to smaller anatomies remains relatively unexplored. We evaluate seven statistical and voting-based label fusion algorithms (and six additional variants) to segment the optic nerves, eye globes, and chiasm. For nonlocal simultaneous truth and performance level estimation (STAPLE), we evaluate different intensit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2014